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概要
フェンチェルの定理により,閉曲線はその (絶対)全曲率が 2π 以上である.一方,曲率や捩率を
どのような周期関数として与えれば閉曲線となるかという逆問題は閉曲線問題と呼ばれる. 本講
演では, 周期的な曲率および捩率によって生成される「空間閉曲線および特異点をもつ閉曲線の
構成法」について考察する.本研究は京都産業大学の緒方勇太氏との共同研究である.

1 導入
閉曲線の研究は幾何学において中心的な役割を果たしてきた. 例えばフェンチェルの定理は, 任意

の閉曲線の (絶対)全曲率は 2π 以上であり,等号成立は平面における卵形線のときに限ることが知ら
れている.さらに平面閉曲線では回転数が定義され,その値は整数値を取ることも知られている.これ
らの有名な古典的な結果は,閉曲線が存在する限り,その幾何学的特徴づけを与えている.一方で,そ
の逆問題, どのような周期的な曲率または捩率が実際に閉曲線を生成するのかは, ほとんど未解明で
ある.これらの閉曲線に関する未解決問題を総称して閉曲線問題と呼び,次のように表される.

閉曲線問題：
平面曲線の場合：どのような周期的な曲率が平面閉曲線を与えるか.

空間曲線の場合：どのような周期的な曲率または捩率が空間閉曲線を与えるか.

閉曲線問題は,局所的な幾何量である曲率および捩率から曲線が閉じるか否かという大域的かつ位
相的性質を導くという点において微分幾何学における基本的かつ本質的な問いである.

これらの閉曲線問題に対して, J. Arroyo, O. J. Garay, J. J. Menćıa による [1]では,一部の平面
曲線に対する閉曲線問題の解を与えた.特に [1]においては,曲率の 1回積分の制御が,閉曲線である
ことを保証する条件として重要な役割を果たすことを示している.

本研究では, [1] における結果を, ルジャンドル平面閉曲線, 球面閉曲線, ルジャンドル球面閉曲
線,ならびに空間閉曲線,さらに枠付き閉曲線へと拡張する.本研究に関する成果は,学術論文として
Journal of Geometry に掲載予定である [2].
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2 準備 & ルジャンドル平面閉曲線
まず,閉曲線の理論と [1]の結果を紹介し,それらを用いてルジャンドル平面閉曲線の場合へ一般化

する.その準備として,全曲率と回転数を定義する.

閉区間 I ⊂ R 上で κ : I → R を曲率とする弧長パラメータで表された正則な平面閉曲線を
γ : I → R2 とする.また,平面曲線の弧長パラメータを s で表す.このとき κ の 2 種類の積分は γ の
長さ L に対して次のように定義される：∫ L

0

|κ(s)|ds , 1

2π

∫ L

0

κ(s)ds.

前者を全曲率, 後者を回転数と呼ぶ. 全曲率は空間閉曲線に対しても定義される基本的な幾何量で
ある.なお,これらの量は必ずしも弧長パラメータ s によって定義される必要はない.全曲率について
は,以下の有名な定理が知られている：

事実 2.1 (フェンチェルの定理, [3, 4]). 正則な閉曲線の全曲率は 2π 以上であり,等号成立は曲線が
ある平面上の卵形線のときに限る.

フェンチェルの定理は,閉曲線に対して全曲率による特徴づけを与える.一方,形式的には任意の正
則曲線に対して全曲率を定義できるが,それが与えられていても,曲線が閉曲線となるとは限らない.

ここでは,平面曲線および空間曲線について考察する.平面曲線の場合,曲率 κ を与えることでその
形は一意に定まり,対応する弧長パラメータで表された曲線 γ は積分によって明確に定式化される：

γ(s) =

(∫ s

0

cos

(∫ u

0

κ(t)dt

)
du,

∫ s

0

sin

(∫ u

0

κ(t)dt

)
du

)
. (2.1)

平面曲線の基本定理より,平面閉曲線を得るには式 (2.1) に現れる 2回積分を解く必要があるが,そ
の解は一般に初等関数では表せない.一方,空間曲線では,式 (2.1) に対応する定式化の存在自体が知
られておらず,周期的な曲率と捩率から閉曲線を得る問題は,平面の場合より著しく困難である.

しかしながら [1]では驚くべきことに,平面曲線の曲率に関する 1回積分を制御することで,平面曲
線が閉じることを証明している.まず [1]の結果を紹介する.

事実 2.2 ([1]). 閉区間 I ⊂ R 上で, 定義された C∞ 級周期関数を κ : I → R とし, 最小周期を
ρκ > 0 とする.また, κ を曲率とする平面曲線を γ : I → R2 とする.このとき, n ∈ N, n > 1 で平
面曲線 γ が [0, nρκ] 上で閉曲線となるための必要十分条件は,ある整数 m ∈ Z が存在し,以下の式
(2.2) を満たすことである.

1

2π

∫ ρκ

0

κ(s)ds =
m

n
∈ Q− Z. (2.2)

次に [1]の結果をルジャンドル平面曲線に拡張する.初めにルジャンドル平面曲線の定義を述べる.

定義 2.3 (ルジャンドル平面曲線, [5]). γ : I → R2 をフロンタルとする.すなわち I 上で ⟨γ′, ν⟩ = 0

となるような写像 ν : I → S1 が存在する.ただし ⟨·, ·⟩ は標準内積とする.このとき (γ, ν) の組をル
ジャンドル平面曲線と呼ぶ.ルジャンドル平面曲線に対して曲率の組 (ℓ, β) が,

ℓ = ⟨ν′,µ⟩, γ′ = βµ, µ = J(ν),



によって定義される. J は反時計回りに角度 π
2 だけ回転させる線形変換を表す.

事実 2.4 (ルジャンドル平面曲線の存在性と一意性, [5]). 区間 I ⊂ R 上で, C∞ 級写像 (ℓ, β) : I →
R2 に対して, (ℓ, β) を曲率の組とするようなルジャンドル平面曲線 (γ, ν) : I → R2 × S1 が存在し,

以下のように定式化される：

γ(t) =

(
−
∫ t

0

sin

(∫ v

0

ℓ(u)du

)
β(v)dv,

∫ t

0

cos

(∫ v

0

ℓ(u)du

)
β(v)dv

)
,

ν(t) =

(
cos

(∫ t

0

ℓ(v)dv

)
, sin

(∫ t

0

ℓ(v)dv

))
.

また,ルジャンドル平面曲線 (γ, ν), (γ̃, ν̃) : I → R2 × S1 に対して,曲率の組 (ℓ, β) = (ℓ̃, β̃) のとき,

ルジャンドル平面曲線 (γ, ν) と (γ̃, ν̃) は回転移動と平行移動を除いて合同である.

次に,ルジャンドル平面閉曲線の主結果を述べ,いくつか具体例を提示する.

定理 2.5 ([2]). 閉区間 I ⊂ R 上で, ℓ : I → R を C∞ 級周期関数とし,その最小周期を ρℓ > 0 と
する.同様に β : I → R を C∞ 級周期関数とし,その最小周期を ρβ > 0 とする.また,曲率の組を
(ℓ, β) とするルジャンドル平面曲線を (γ, ν) : I → R2 × S1 とする.さらに ρℓ

ρβ
= q

p ∈ Q− {0} とし
gcd(p, q) = 1 とする.このとき, n ∈ N , n > 1 に対してルジャンドル平面曲線 (γ, ν) が [0, npρℓ] で
閉じるための必要十分条件は,ある整数 m ∈ Z が存在し,以下を満たすことである：

1

2π

∫ pρℓ

0

ℓ(t)dt =
m

n
∈ Q− Z. (2.3)

例 2.6. 区間 I = [0, 10π] に対して β(t) = sin(t), ℓ(t) = cos(t) + 1
5 とする.このとき, ρℓ

ρβ
= 1 であ

り, 1
2π

∫ 2π

0
ℓ(t)dt = m

n = 1
5 ∈ Q−Z である.したがって,ルジャンドル平面曲線 (γ, ν) は閉曲線とな

る. t = 0, π, 2π, · · · , 10π で β(t) = 0 , ℓ(t) ̸= 0 となり, (γ, ν) は波面の特異点となる (図 1 の左図
を参照).また,区間 I = [0, 4π] に対して β(t) = cos(t), ℓ(t) = cos(t)(cos(t) + 1

4 ) とする.このとき,
ρβ

ρℓ
= 1 であり, 1

2π

∫ 2π

0
ℓ(t)dt = m

n = 1
2 ∈ Q − Z である.したがって,ルジャンドル平面曲線 (γ, ν)

は閉曲線となる.一方, t = π
2 ,

3
2π,

5
2π,

7
2π において β(t) = ℓ(t) = 0 となるため, (γ, ν) はフロンタル

の特異点となる (図 1 の右図を参照).

図 1 単純なルジャンドル平面閉曲線.黒線は [0, pρℓ] 上の閉曲線の基本部分を示す.図中の赤点
は,左図 (resp.右図)の波面 (resp.フロンタル)の特異点を表す.



3 球面閉曲線 & 球面上の波面となる閉曲線
本章では, [1] の結果を S2 ⊂ R3 内に含まれる球面曲線に拡張する.初めに,球面上のダルブー枠と

しても知られるサバン枠について定義する.

定義 3.1 (サバン枠, cf.[9]). ξ : I → S2 を正則な球面曲線とし, t = ξ′

|ξ′| を単位接ベクトル, n = ξ×ξ′

|ξ′|

を単位法ベクトルとする. × は外積であり, |ξ′| =
√
⟨ξ′, ξ′⟩ とする.このとき, {ξ, t,n} は球面曲線

ξ のサバン枠と呼ぶ.サバン枠は次のフレネ-セレ型の線形常微分方程式を満たす：

d

dt

ξ
t
n

 =

 0 |ξ′| 0
−|ξ′| 0 |ξ′|κg

0 −|ξ′|κg 0

ξ
t
n

 .

なお κg : I → R は測地的曲率である.

次に球面閉曲線 ξ の主結果について紹介する.

定理 3.2 ([2]). 球面曲線 ξ (resp.n)で,周期関数の 1回積分の値を制御することにより,曲線の向き
を保つ回転対称な閉曲線 (resp.球面上の波面となる閉曲線)が存在する (図 2 および図 3 を参照).

当日の講演では,球面閉曲線 ξ の明示的な構成法と測地的曲率 κg の定式化および曲線の向きを保
つ回転対称な球面閉曲線の同値条件について述べる.また,球面閉曲線 ξ に対して球面曲線の単位接
ベクトル t および単位法ベクトル n についても考察を行う.特に n は球面上の波面となる特異点を
もつことがある (図 3 を参照).

4 空間閉曲線 & 枠付き閉曲線
この章では,周期関数の 1回積分と,もう一つの周期関数の周期の比を特別な有理数に選ぶことに

よって得られる,空間閉曲線および枠付き閉曲線の構成法を紹介する.この構成法は,前章で述べた曲
線の向きを保つ回転対称な球面閉曲線 ξ が与えられたとき,曲線の向きを保つ回転対称な空間閉曲線
に対する閉曲線問題の十分条件を与える. さらに, この方法によって得られる空間閉曲線は正則とは
限らないため,フレネ–セレ型の公式を適切に定義するために,枠付き曲線を用いる.

定義 4.1 (枠付き曲線, cf.[6, 8]). ∆ := {(a, b) ∈ S2 × S2 |⟨a, b⟩ = 0} と定義する. 区間 I ⊂ R 上
で (η, ν1, ν2) : I → R3 × ∆ が枠付き曲線とは, 任意の t ∈ I と i = 1, 2 で ⟨η, νi⟩ = 0 が成り立
つことをいう. さらに η : I → R3 が枠付き (基底) 曲線とは (η, ν1, ν2) が枠付き曲線となるような
(ν1, ν2) : I → ∆ が存在することをいう.

(η, ν1, ν2) が枠付き曲線とする. µ(t) = ν1(t)× ν2(t) により, η に沿った一般化された単位接ベク
トル µ : I → S2 を定義する.このとき {µ, ν1, ν2} は η に沿った動標構と呼ぶ.この動標構に関して,

以下のフレネ-セレ型の公式が成り立つ：ν′1(t)
ν′2(t)
µ′(t)

 =

 0 κ1(t) κ2(t)
−κ1(t) 0 κ3(t)
−κ2(t) −κ3(t) 0

ν1(t)
ν2(t)
µ(t)

 , η′(t) = R(t)µ(t).



このとき, (κ1, κ2, κ3, R) を枠付き曲線 (η, ν1, ν2) の曲率と呼ぶ.また, t0 ∈ I が η の特異点であるた
めの必要十分条件は R(t0) = 0 である.

ここでは,前章で導入した球面閉曲線 ξ と C∞ 級周期関数 a : I → R を用いて,次の式で定式化さ
れるような (特異点をもつ)空間閉曲線を得ることを考える.

cξ(s) := a(s)ξ(s).

ξ が正則であっても, cξ が正則ではない場合がある.ここでは,主定理の前に cξ が枠付き曲線となる
ための必要十分条件を示す.

補題 4.2 ([2, 7]). ξ を前章で紹介した球面閉曲線とする.また a : I → R は C∞ 級周期関数とする.

cξ は以下のように定義する：
cξ(s) = a(s)ξ(s).

このとき, cξ が R3 上の枠付き (基底)曲線となるための必要十分条件は,ある C∞ 級関数 ϕ : I → R
が存在し, ν1 = n および ν2 = cosϕ ξ − sinϕ t に対して以下の式を満たすことである.

a′(s) cosϕ(s)− |ξ′(s)|a(s) sinϕ(s) = 0. (4.1)

さらに,任意の s ∈ I で a2 + (a′)2 > 0 のとき cξ は自明に正則な空間曲線となる.

それでは準備が整ったので, cξ に関する主結果を述べる.

定理 4.3 ([2]). 式 (4.1) を満たす (cξ, ν1, ν2) : I → R3 ×∆ は補題 4.2 で定義されるような枠付き
曲線とする.このとき,ある周期関数の 1回積分の値と,もう一つの周期関数との周期の比を特別な有
理数に選ぶことで,曲線の向きを保つ回転対称な枠付き閉曲線となるものが存在する (図 2 を参照).

当日の講演では,前章で紹介した曲線の向きを保つ回転対称な球面閉曲線 ξ が与えられた場合に得
られる枠付き閉曲線 cξ の以下の主張について述べる.

(1) 閉曲線となるための必要十分条件.

(2) 曲線の向きを保つ回転対称な閉曲線となる必要十分条件.

(3) 曲率および捩率の公式.

これらの主張は,曲線の向きを保つ回転対称な球面閉曲線 ξ が与えられたときに,対応する cξ が曲
線の向きを保つ回転対称な枠付き閉曲線となるための閉曲線問題に対する十分条件を与える.

次に,枠付き曲線 cξ の特異点の判定に関する主結果として, (2,3)-カスプの判定法について述べる.

特筆すべき点として,枠付き曲線 cξ の (2,3)-カスプの判定が, a(s) のみから与えられることである.

定理 4.4 ([2]). cξ が s = s0 で (2,3)-カスプとなるための必要十分条件は a(s0) = a′(s0) = 0 かつ
a′′(s0) ̸= 0 である (図 2 に示す例のうち,特に a2 ξ を参照).

また,前章で紹介した球面閉曲線の単位法ベクトル n と C∞ 級周期関数 b : I → R を用いて, cn

を次のように定義する：
cn(s) = b(s)n(s).



cn も, cξ の場合と同様に補題 4.2 や定理 4.3, 定理 4.4 に対応する結果が成り立つが,議論の本質は
同様であるため,本レポートでは詳細な紹介を省略する.詳細は共著論文 [2] を参照されたい.以下で
は,具体例のみを紹介する (図 3 を参照).

5 具体例の紹介
最後に ξ, n, cξ, cn に関する具体例を紹介する.用いる周期関数は以下で定義する.

a1(s) = sin s+ 3, a2(s) = sin s+ 1, b1(s) = cos s+ 1, b2(s) = cos s+ 3.

図 2 球面閉曲線 ξ から枠付き閉曲線 cξ を構成する. 曲線 ξ に様々な種類の C∞ 級周期関数
ai (i = 1, 2) を適用する.赤点は (2,3)-カスプである.

図 3 球面上の波面となる閉曲線 n から枠付き閉曲線 cn を構成する. 曲線 n に様々な C∞ 級
周期関数 bj (j = 1, 2) を適用する.赤点は (2,3)-カスプである.
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